Hyperspectral Image Clustering with Spatially-Regularized Ultrametrics

نویسندگان

چکیده

We propose a method for the unsupervised clustering of hyperspectral images based on spatially regularized spectral with ultrametric path distances. The proposed efficiently combines data density and spectral-spatial geometry to distinguish between material classes in data, without need training labels. is efficient, quasilinear scaling number points, enjoys robust theoretical performance guarantees. Extensive experiments synthetic real HSI demonstrate its strong compared benchmark state-of-the-art methods. Indeed, not only achieves excellent labeling accuracy, but also estimates clusters. Thus, unlike almost all existing methods, algorithm essentially parameter-free.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Planar Ultrametrics for Image Segmentation

We study the problem of hierarchical clustering on planar graphs. We formulate this in terms of finding the closest ultrametric to a specified set of distances and solve it using an LP relaxation that leverages minimum cost perfect matching as a subroutine to efficiently explore the space of planar partitions. We apply our algorithm to the problem of hierarchical image segmentation.

متن کامل

Hyperspectral Image Classification Using Graph Clustering Methods

Hyperspectral imagery is a challenging modality due to the dimension of the pixels which can range from hundreds to over a thousand frequencies depending on the sensor. Most methods in the literature reduce the dimension of the data using a method such as principal component analysis, however this procedure can lose information. More recently methods have been developed to address classificatio...

متن کامل

Multiple Classifier Ensembles with Band Clustering for Hyperspectral Image Classification

Due to the high dimensionality of a hyperspectral image, classification accuracy of a single classifier may be limited when the size of the training set is small. A divide-and-conquer approach has been proposed, where a classifier is applied to each group of bands and the final output will be the fused result of multiple classifiers. Since the dimensionality in each band group is much lower, cl...

متن کامل

Inverting hyperspectral images with Gaussian Regularized Sliced Inverse Regression

In the context of hyperspectral image analysis in planetology, we show how to estimate the physical parameters that generate the spectral infrared signal reflected by Mars. The training approach we develop is based on the estimation of the functional relationship between parameters and spectra, using a database of synthetic spectra generated by a physical model. The high dimension of spectra is...

متن کامل

Co-regularized Spectral Clustering with Multiple Kernels

We propose a co-regularization based multiview spectral clustering algorithm which enforces the clusterings across multiple views to agree with each-other. Since each view can be used to define a similarity graph over the data, our algorithm can also be considered as learning with multiple similarity graphs, or equivalently with multiple kernels. We propose an objective function that implicitly...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Remote Sensing

سال: 2021

ISSN: ['2315-4632', '2315-4675']

DOI: https://doi.org/10.3390/rs13050955